| Occupation | 1990 | 2010 |
|---|---|---|
| Secretary | ✓ | ✓ |
| Nurse | ✗ | ✓ |
How Skill Requirements Propagate — And Why They Preserve Hierarchies
Roberto Cantillan & Mauricio Bucca
Department of Sociology | Pontificia Universidad Católica de Chile
What we know:
What we don’t know:
How do skill requirements propagate between occupations — and why does this process reproduce hierarchies?

| Occupation | 1990 | 2010 |
|---|---|---|
| Secretary | ✓ | ✓ |
| Nurse | ✗ | ✓ |
Polarization (Alabdulkareem et al. 2018)

Nestedness (Hosseinioun et al. 2025)


Skill specific diffusivity (g)
Masses (m)
Distance (d)
Socio-cognitive requirements are preferentially adopted by occupations of higher status than the source, successfully climbing the status gradient.
Physical requirements face a structural “upward veto,” being predominantly relegated to adoption paths toward lower-status occupations.
This asymmetric dynamic would explain the observed polarized skill architecture of the labor market.

For each skill type, I estimate a linearized version of the gravity model
\[ \begin{aligned} \mathrm{logit}\,P(Y_{ijs}=1) = \, & \beta_{\text{up}}(\text{wage_gap}_{ij})^\uparrow + \beta_{\text{down}}(\text{wage_gap}_{ij})^\downarrow \\ & + \delta \cdot \text{relatedness}_{ij} \\ & + \text{source}_{i} / \text{target}_{j} + \text{skill}_{s} \end{aligned} \]






This asymmetry reflects structural filtering, not chance:
Adoption capacity
High-status occupations have more resources, slack, and organizational capacity to experiment with complex, high-nestedness skills.
Market shift
Elite occupations increasingly demand socio-cognitive skills to manage coordination, abstraction, and organizational complexity.
Status filtering
High-status occupations actively avoid physical requirements to preserve professional distinction and symbolic boundaries.
Main finding:
Skill diffusion is asymmetric: it pulls socio-cognitive skills upward and pushes physical skills downward.
Key takeaways:
Directional filtering
Physical skills face a barrier that prevents them from entering high-wage occupations.
Nestedness matters
Skills that anchor and enable other skills exhibit the strongest asymmetries.
Systemic Reproduction
This selective channeling acts as the dynamic engine that maintains and reinforces the labor market’s polarized skill architecture.
Roberto Cantillan
Department of Sociology, PUC Chile
rcantillan@uc.cl
Paper and Replication: github.com/rcantillan/skill_diffusion
Revealed Comparative Advantage:
\[\mathrm{RCA}(j,s) = \frac{\mathrm{onet}(j,s)/\sum_{s'}\mathrm{onet}(j,s')}{\sum_{j'}\mathrm{onet}(j',s)/\sum_{j',s''}\mathrm{onet}(j',s'')}\]
Event definitions for skill s:
Directional gaps:
\[\Delta^{\uparrow}_{ij} = \max(0, \text{status}_j - \text{status}_i)\]
\[\Delta^{\downarrow}_{ij} = \max(0, \text{status}_i - \text{status}_j)\]
Contribution to nestedness (cs):
\[c_s = \frac{\mathrm{NODF}_{\text{obs}} - \mathbb{E}[\mathrm{NODF}^{(s)}_{\text{rand}}]}{\mathrm{sd}[\mathrm{NODF}^{(s)}_{\text{rand}}]}\]
Interpretation:
Reach:
In our models:
| Term | Coefficient | SE |
|---|---|---|
| Upward (base) | +0.08 | 0.04 |
| Downward (base) | +0.13 | 0.11 |
| Domain: Physical | +0.72 | 0.30 |
| Upward × Physical | −0.42 | 0.07 |
| Downward × Physical | +0.52 | 0.18 |
| Structural distance | −1.90 | 0.20 |
| Distance × Physical | −1.33 | 0.52 |
| Nestedness: Mid | +0.00 | 0.04 |
| Nestedness: High | −0.13 | 0.05 |
| Upward × Nest-Mid | +0.12 | 0. 03 |
| Upward × Nest-High | +0. 07 | 0.04 |
ClogLog link. Two-way FE (source, target). Clustered SE.
Step 1: Classic Gravity \[T_{ij} = k \cdot \frac{M_i M_j}{D_{ij}^{\gamma}} \quad \Rightarrow \quad \log \mathbb{E}[T_{ij}] = \beta_0 + \alpha_i + \beta_j - \gamma \log D_{ij}\]
Step 2: Triadic Extension (adding skill \(k\)) \[\lambda_{ijk} \propto \frac{M_i \cdot M_j \cdot S_k}{D_{ij}^{\gamma}} \quad \Rightarrow \quad \log \lambda_{ijk} = \beta_0 + \alpha_i + \beta_j + \delta_k - \gamma \log D_{ij}\]
Step 3: Asymmetric Frictions \[\Delta^{\uparrow}_{ij} = \max(G_{ij}, 0), \quad \Delta^{\downarrow}_{ij} = \max(-G_{ij}, 0)\]
Step 4: Skill Mass via Attributes \[\text{SkillMass}_k = \eta_0 + \eta_D D_k + \eta_N N_k + \eta_{DN} D_k N_k\]
Step 5: Full Specification \[\text{cloglog}\big(\Pr(T_{ijk}=1)\big) = \beta_0 + \alpha_i + \beta_j + \eta_0 + \eta_D D_k + \eta_N N_k + \eta_{DN} D_k N_k + \beta^{\uparrow} \Delta^{\uparrow}_{ij} + \beta^{\downarrow} \Delta^{\downarrow}_{ij}\]
Coefficients (wage gap, cloglog scale):
| Term | Cognitive | Physical | Interaction |
|---|---|---|---|
| Upward | +0.08. | −0.34 | −0.42*** |
| Downward | +0.13 (ns) | +0.65 | +0.52** |
| Distance | −1.90*** | −3.23 | −1.33* |
Interpretation:
| Test | Specification | Result |
|---|---|---|
| Thresholds | RCA 0.9, 1.0, 1.1 | Pattern unchanged |
| Distances | Shortest path, resistance, cosine | Same relative slopes |
| Periods | 2015-18, 2019-21, 2022-24 | ATC persists |
| Bootstrap | Node-level B=1000 vs clustered SE | Ratio around 1.0 |
| Representation | Skill-skill vs occ-occ network | Ordinal match |
The asymmetry is not an artifact of thresholds, distance measures, or time periods.